Part Number Hot Search : 
1N5818 5KP190CA TC74LC AN3398 UP1G34 LNK623DG LL15XB60 BYG20G
Product Description
Full Text Search
 

To Download IRFRU3505PBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  irfr3505pbf irfu3505pbf hexfet ? power mosfet s d g v dss = 55v r ds(on) = 0.013 ? i d = 30a  www.kersemi.com 1 d-pak  i-pak irfr3505 irfu3505 parameter typ. max. units r jc junction-to-case ??? 1.09 r ja junction-to-ambient (pcb mount)  ??? 40 c/w r ja junction-to-ambient ??? 110 thermal resistance automotive mosfet specifically designed for automotive applications, this hexfet ? power mosfet utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. additional features of this product are a 175c junction operating temperature, fast switching speed and im- proved repetitive avalanche rating. these features combine to make this design an extremely efficient and reliable device for use in automotive applications and a wide variety of other applications. the d-pak is designed for surface mounting using vapor phase, infrared, or wave soldering techniques. the straight lead version (irfu series) is for through-hole mounting applications. power dissipation levels up to 1.5 watts are possible in typical surface mount applications. description  advanced process technology  ultra low on-resistance  175c operating temperature  fast switching  repetitive avalanche allowed up to tjmax  lead-free features absolute maximum ratings parameter max. units i d @ t c = 25c continuous drain current, v gs @ 10v (silicon limited) 71 i d @ t c = 100c continuous drain current, v gs @ 10v (see fig.9) 49 a i d @ t c = 25c continuous drain current, v gs @ 10v (package limited) 30 i dm pulsed drain current   280 p d @t c = 25c power dissipation 140 w linear derating factor 0.92 w/c v gs gate-to-source voltage 20 v e as single pulse avalanche energy  210 mj e as (tested) single pulse avalanche energy tested value  410 i ar avalanche current  see fig.12a, 12b, 15, 16 a e ar repetitive avalanche energy  mj dv/dt peak diode recovery dv/dt  4.0 v/ns t j operating junction and -55 to + 175 t stg storage temperature range c soldering temperature, for 10 seconds 300 (1.6mm from case ) pd - 95511a

 2 www.kersemi.com parameter min. typ. max. units conditions v (br)dss drain-to-source breakdown voltage 55 ??? ??? v v gs = 0v, i d = 250a ? v (br)dss / ? t j breakdown voltage temp. coefficient ??? 0.057 ??? v/c reference to 25c, i d = 1ma r ds(on) static drain-to-source on-resistance ??? 0.011 0.013 ? v gs = 10v, i d = 30a  v gs(th) gate threshold voltage 2.0 ??? 4.0 v v ds = 10v, i d = 250a g fs forward transconductance 41 ??? ??? s v ds = 25v, i d = 30a ??? ??? 20 a v ds = 55v, v gs = 0v ??? ??? 250 v ds = 55v, v gs = 0v, t j = 125c gate-to-source forward leakage ??? ??? 200 v gs = 20v gate-to-source reverse leakage ??? ??? -200 na v gs = -20v q g total gate charge ??? 62 93 i d = 30a q gs gate-to-source charge ??? 17 26 nc v ds = 44v q gd gate-to-drain ("miller") charge ??? 22 33 v gs = 10v  t d(on) turn-on delay time ??? 13 ??? v dd = 28v t r rise time ??? 74 ??? i d = 30a t d(off) turn-off delay time ??? 43 ??? r g = 6.8 ? t f fall time ??? 54 ??? v gs = 10v  between lead, ??? ??? 6mm (0.25in.) from package and center of die contact c iss input capacitance ??? 2030 ??? v gs = 0v c oss output capacitance ??? 470 ??? pf v ds = 25v c rss reverse transfer capacitance ??? 91 ??? ? = 1.0mhz, see fig. 5 c oss output capacitance ??? 2600 ??? v gs = 0v, v ds = 1.0v, ? = 1.0mhz c oss output capacitance ??? 330 ??? v gs = 0v, v ds = 44v, ? = 1.0mhz c oss eff. effective output capacitance  ??? 630 ??? v gs = 0v, v ds = 0v to 44v nh electrical characteristics @ t j = 25c (unless otherwise specified) l d internal drain inductance l s internal source inductance ??? ??? s d g i gss ns 
 i dss drain-to-source leakage current s d g parameter min. typ. max. units conditions i s continuous source current mosfet symbol (body diode) ??? ??? showing the i sm pulsed source current integral reverse (body diode)  ??? ??? p-n junction diode. v sd diode forward voltage ??? ??? 1.3 v t j = 25c, i s = 30a, v gs = 0v  t rr reverse recovery time ??? 70 105 ns t j = 25c, i f = 30a, v dd = 28v q rr reverse recoverycharge ??? 180 270 nc di/dt = 100a/s   t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by l s +l d ) source-drain ratings and characteristics 71 280

 www.kersemi.com 3 fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics 0. 1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 4.5v 20s pulse width tj = 25c 0. 1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 4.5v 20s pulse width tj = 175c 4. 0 5. 0 6.0 7. 0 8. 0 9.0 10. 0 v gs , gate-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) t j = 25c t j = 175c v ds = 25v 20s pulse width    


 
    
     


 
    
  fig 4. typical forward transconductance vs. drain current 0 102030405060708090 i d ,drain-to-source current (a) 0 10 20 30 40 50 60 70 g f s , f o r w a r d t r a n s c o n d u c t a n c e ( s ) t j = 25c t j = 175c v ds = 25v 20s pulse width

 4 www.kersemi.com fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 0.0 0.5 1.0 1.5 2.0 2.5 v sd , source-todrain voltage (v) 0.1 1.0 10.0 100.0 1000.0 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 1 10 100 1000 v ds , drain-tosource voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec 1 10 100 v ds , drain-to-source voltage (v) 0 1000 2000 3000 4000 c , c a p a c i t a n c e ( p f ) coss crss ciss v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd 0 20406080100 q g total gate charge (nc) 0 4 8 12 16 20 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 44v vds= 28v vds= 11v i d = 30a

 www.kersemi.com 5 fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature 25 50 75 100 125 150 175 t c , case temperature (c) 0 20 40 60 80 i d , d r a i n c u r r e n t ( a ) limited by package 1e-006 1e-005 0. 0001 0. 001 0. 01 0. 1 t 1 , rectangular pulse duration (sec) 0. 001 0. 01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) fig 10. normalized on-resistance vs. temperature -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0. 5 1. 0 1. 5 2. 0 2. 5 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 30a v gs = 10v

 6 www.kersemi.com q g q gs q gd v g charge d.u.t. v d s i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + -  fig 13b. gate charge test circuit fig 13a. basic gate charge waveform fig 12c. maximum avalanche energy vs. drain current fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v (br)dss i as fig 14. threshold voltage vs. temperature r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs -75 -50 -25 0 25 50 75 100 125 150 175 200 t j , temperature ( c ) 1. 6 2. 0 2. 4 2. 8 3. 2 3. 6 4. 0 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 100 200 300 400 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j )     


 www.kersemi.com 7 fig 15. typical avalanche current vs.pulsewidth fig 16. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 15, 16: (for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 12a, 12b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. ' t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 15, 16). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figure 11) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1. 0e-07 1. 0e-06 1. 0e-05 1. 0e-04 1.0e-03 1. 0e-02 1. 0e-01 tav (sec) 0. 1 1 10 100 1000 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav assuming ' tj = 25c due to avalanche losses. note: in no case should tj be allowed to exceed tjmax 0.01 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 40 80 120 160 200 240 e a r , a v a l a n c h e e n e r g y ( m j ) t op single pulse bottom 10% duty cycle i d = 30a

 8 www.kersemi.com fig 17. 
    

 for n-channel hexfet   power mosfets  !"# ! ? $% " #  ?  "& #  ? $#'(#% " #  #  !)*# p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop r e-applied v oltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period       + - + + + - - -       ? "+," &&#"-.  ? +#!*#/#! 0  ? %   &&#"-122 ?  0  3#+#0 "##!   v ds 9 0% 1 0% v gs t d(on) t r t d(off) t f  &!#4"5 1 6! 1 0.1 %        + -  fig 18a. switching time test circuit fig 18b. switching time waveforms

 www.kersemi.com 9  

  

  12 in the assembly line "a" ass embled on ww 16, 1999 example: wi t h as s e mb l y t his is an irfr120 lot code 1234 year 9 = 199 9 dat e code we e k 16 part number logo int ernat ional rect ifier as s e mb l y lot code 916a irf u120 34 year 9 = 1999 dat e code or p = des ignat es lead-f ree product (optional) note: "p" in ass embly line pos ition indicates "l ead- f ree" 12 34 we e k 16 a = as s e mb l y s i t e code part number irfu120 line a logo lot code as s e mb l y int ernat ional rect ifier

 10 www.kersemi.com   
     
      
    
  as s e mb l y example: wi t h as s e mb l y this is an irfu120 ye ar 9 = 199 9 dat e code line a we e k 19 in the as sembly line "a" as s emble d on ww 19, 1999 lot code 5678 part number 56 irfu120 international logo rectifier lot code 919a 78 note: "p" in as s embly line pos i ti on i ndi cates "l ead- f r ee"  56 78 assembly lot code rectifier logo international irf u120 part number we e k 19 dat e code ye ar 9 = 1999 a = assembly site code p = de s i gnat e s l e ad- f r e e product (opt ional)

 www.kersemi.com 11 data and specifications subject to change without notice.   repetitive rating; pulse width limited by max. junction temperature. (see fig. 11).   limited by t jmax , starting t j = 25c, l = 0.47mh r g = 25 ? , i as = 30a, v gs =10v. part not recommended for use above this value.  i sd 30a, di/dt 300a/s, v dd v (br)dss , t j 175c  pulse width 1.0ms; duty cycle 2%. 
 c oss eff. is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss .  limited by t jmax , see fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.  this value determined from sample failure population. 100% tested to this value in production.   when mounted on 1" square pcb (fr-4 or g-10 material) . for recommended footprint and soldering techniques refer to application note #an-994   

    
      
   tr 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) 12.1 ( .476 ) 11.9 ( .469 ) feed direction feed direction 16.3 ( .641 ) 15.7 ( .619 ) trr trl n otes : 1 . controlling dimension : millimeter. 2 . all dimensions are shown in millimeters ( inches ). 3 . outline conforms to eia-481 & eia-541. notes : 1. outline conforms to eia-481. 16 mm 13 inch


▲Up To Search▲   

 
Price & Availability of IRFRU3505PBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X